Convergent First-order Kinetics
Scheme:
`Astackrel(k_1) rarrB stackrel(k_2)larrC`
Differential Equation:
`A'(t)=-k_1A` `B'(t)=k_1A+k_2C` `C'(t)=-k_2C` |
Mass balance equation:
`A+B+C=A_0+C_0`
Initial conditions:
`A(0)=A_0`, `B(0)=0` and `C(0)=C_0`
Solution:
`A_t=A_0exp(-k_1t)` `B_t=A_0-A_0exp(-k_1t)+C_0-C_0exp(-k_2t)` `C_t=C_0exp(-k_2t)` |
Graph:
Plotting A0=2.1Mol, B0=0, C0=3.3Mol,
k1=1e-2, k2=1.7e-2
Derivation:
The solution can be obtained directly by integration of the separable equations. First `A'(t),`
`int_(A_0)^(A_t)(dA)/A=-k_1t`
`lnA_t=lnA_0-k_1t`
`A(t)=A_0exp(-k_1t)`
Next, `C'(t)`,
`int_(C_0)^(C_t)(dC)/C=-k_2t`
`lnC_t=lnC_0-k_2t`
`C(t)=C_0exp(-k_2t)`
We can now find `B(t)` through the mass-balance expression,
`B=A_0-A+C_0-C`
Thus,
`B(t)=A_0-A_0exp(-k_1t)+C_0-C_0exp(-k_2t)`