The Hydrogen Atom and Rydberg Transitions
When electrons fall from excited states to lower energy levels, photons are emitted.
`stackrel(~)nu=R_H(1/n_1^2 - 1/n_2^2)`
where `n_2>n_1` and `R_H`
is the Rydberg Constant
`E_n=-(hcR_H)/n^2`
These energies are negative because work has to be done to promote the electrons to the vacuum. For ionisation, `n_2=oo`, since `1/oo=0`, then
`E_("ionisation")=hcR_H`
diagram
`F=zq^2/(4piepsilon_0r^2`
`V=int_oo^r (zq^2)/(4piepsilon_0r^2)dr=-zq^2/(4piepsilon_0r)`
Hydrogen Spectral Lines
Lyman Series (`n'=1`) | Balmer Series (`n'=2`) | Paschen Series (`n'=3`) | |||||
n | `lambda` /nm | n | `lambda` /nm | n | `lambda` /nm | ||
2 | 122 | 3 | 656 | 4 | 1870 | ||
3 | 103 | 4 | 486 | 5 | 1280 | ||
4 | 97.2 | 5 | 434 | 6 | 1090 | ||
5 | 94.9 | 6 | 410 | 7 | 1000 | ||
6 | 93.7 | 7 | 397 | 8 | 954 | ||
`oo` | 91.1 | `oo` | 365 | `oo` | 820 |
Brackett Series (`n'=4`) | Pfund Series (`n'=5`) | |||
n | `lambda` /nm | n | `lambda` /nm | |
5 | 4050 | 6 | 7460 | |
6 | 2920 | 7 | 4650 | |
7 | 2170 | 8 | 3740 | |
8 | 1940 | 9 | 3300 | |
9 | 1820 | 10 | 3040 | |
`oo` | 1460 | `oo` | 2280 |