The Hydrogen Atom and Rydberg Transitions

When electrons fall from excited states to lower energy levels, photons are emitted.

`stackrel(~)nu=R_H(1/n_1^2 - 1/n_2^2)`
where `n_2>n_1` and `R_H` is the Rydberg Constant

`E_n=-(hcR_H)/n^2`

These energies are negative because work has to be done to promote the electrons to the vacuum. For ionisation, `n_2=oo`, since `1/oo=0`, then

`E_("ionisation")=hcR_H`

diagram

`F=zq^2/(4piepsilon_0r^2`

`V=int_oo^r (zq^2)/(4piepsilon_0r^2)dr=-zq^2/(4piepsilon_0r)`

Hydrogen Spectral Lines

Lyman Series (`n'=1`)   Balmer Series (`n'=2`)   Paschen Series (`n'=3`)
n `lambda` /nm   n `lambda` /nm   n `lambda` /nm
2 122   3 656   4 1870
3 103   4 486   5 1280
4 97.2   5 434   6 1090
5 94.9   6 410   7 1000
6 93.7   7 397   8 954
`oo` 91.1   `oo` 365   `oo` 820

Brackett Series (`n'=4`)   Pfund Series (`n'=5`)
n `lambda` /nm   n `lambda` /nm
5 4050   6 7460
6 2920   7 4650
7 2170   8 3740
8 1940   9 3300
9 1820   10 3040
`oo` 1460   `oo` 2280