Rotational and Vibrational Spectroscopy
Energy of a rotational level
`E_J=hcBJ(J+1)=hbar^2/(2I) J(J+1)`
The rotational constant, B,
`B=h/(8pi^2cI)`
Moment of Inertia, I,
`I=muR^2`
Reduced mass, `mu`,
`mu=(m_1m_2)/(m_1+m_2)`
A transition is observed in a pure rotation spectrum is the difference in energy between two EJ states, ie.,
`DeltaE_J` | `=E_(J-2)-E_(J-1)` `=hcB(J+1)(J+2)-hcB(J+1)J` `=hcB(J+1)2` |
Thus,
`DeltaE_J=2hcB(J+1)`
where J is the quantum number of the lower level.
`DeltaE_J=hnu=hcstackrel(~)nu`
where `stackrel(~)nu` is the wavenumber of an individual transition.
On a spectrum, the difference in wavenumbers between two peaks adjacent is 2B,
diagram
ie., `stackrel(~)nu_2-stackrel(~)nu_1=2B(J+2)-2B(J+1)=2B`
To get Bond Length from `stackrel(~)nu` spacing
spacing = 2B
Generally, `stackrel(~)nu` given in cm-1, to convert to m-1 multiply by 100
Spacing, `Deltastackrel(~)nu=2B`
`B=(Deltastackrel(~)nu)/2=h/(8pi^2cI)`
Solve for I, `I=muR^2`
`mu=(m_1m_2)/(m_1+m_2)`
Convert molar masses into gmol-1 into kg,
`(M_r(gmol^(-1)))/(1000xxN_A)=m(kg)`
Reduced mass,
`mu=N_A^(-1)xx10^(-3) ((m_(r1)xxm_(r2))/(m_(r1)+m_(r2)))`
Bond length, R, is calculated,
`R=sqrt(h/(4pi^2cmuDeltastackrel(~)nu))`
To find which Rotational Level has the largest population:
The Boltzmann Distribution is differentiated,
The Boltzmann distribution:
`N_J/N_0=(g_J/g_0) exp(-(hcBJ(J+1))/(kT))`
`J_(max)=sqrt(T/(2theta))-1/2`
`theta=(hcB)/k`
thus,
`J_(max)=sqrt((kT)/(2hcB))-1/2`
Centrifugal Distortion
`E=hcBJ(J+1)-hcDJ^2(J+1)^2`
`D=(4B^3)/((stackrel(~)nu)^2)`
where `stackrel(~)nu` is the vibrational wavenumber
Vibrational Motion
The energy of a vibrational level,
`E_v=homega_0(v+1/2)`
where `v` is the
vibrational quantum number and `omega_0` is the fundamental frequency of
vibration
`omega_0=1/(2pi) sqrt(k/mu)`
Calculation of a Force Constant
Example X:
Vibrational transition, `v=0rarrv=1` for CO at `stackrel(~)nu=2143.3cm^(-1)`
We assume the moelcular behaves like a simple harmonic oscillator,
`DeltaE=E_2-E_1` | `=homega_0(1+1/2)-homega_0(0+1/2)` |
|
`=homega_0` =`h/(2pi) sqrt(k/mu)` |
`hcstackrel(~)nu=h/(2pi) sqrt(k/mu)`
`k=(2picstackrel(~)nu)^2mu`
`mu=(m_1m_2)/(m1+m2)` in kg
to convert `mu(kg)` from `mu(gmol^(-1))`,
`mu(gmol^(-1))xx(N_Axx1000)=mu(kg)`
`M_r(C)=12.01gmol^(-1)`
`M_r(O)=16.00gmol^(-1)`
`k` |
`=(2pixx2.998xx10^8ms^(-1)xx2143.3xx100m^(-1))^2mu` |
`=1.63xx10^29s^(-2)xx(M_r(C)xxM_r(O))/(M_r(C)+M_r(O))xx1/(N_Axx1000)` `=1856Nm^(-1)` where Nm-1 is kgs-2 |
Rovibrational Spectroscopy
The origin of the spectrum is centred around the forbidden transition, DeltaJ=0` & `Deltav=1`. Extrapolation between the two points in the centre give the wavenumber for the pure vibrational transition. ie.,
`hcstackrel(~)nu=homega_0`
The lower `stackrel(~)nu` brnach is the P-Branch, corresponding to `Deltav=1` & `DeltaJ=-1`. The higher energy branch, R-Branch corresponds to `DeltaJ=+1` & `DeltaV=+1`.
diagram
diagram
Rotational Energy Level Diagram
diagram - divergent energy levels
Electronic Energy Level Diagram
diagram - convergent energy levels
`E=(hcR_H)/n^2`
Vibrational Energy Level Diagram
diagram diagram