U-substitution
To differentiate a function of a function, we can use u-substitution. For example,
`(dF(G(x)))/(dx)=??`
We use the substitution,
`u=G(x)`
and differentiate it,
`(du)/(dx)=(dG(x))/(dx)`
Then using the definition of `u`, we differentiate `F(G(x))`,
`F(G(x))=F(u)`
and so,
`(dF(G(x)))/(dx)=(dF(u))/(du) (du)/(dx) = (dF(G(x)))/(dG(x)) (dG(x))/(dx)`
This is a statement of the chain rule.
Find the derivative of `exp(lambdax)`.
Using the chain rule we have,
`G(x)=lambdax` and `F(G(lambdax))=F(G(u))`
Thus,
`(dexp(lambdax))/(dx)=(dexp(u))/(du) (du)/(dx)`
Let `u=lambdax`, then `(du)/(dx)=lambda` and so,
`(dexp(u))/(du) (du)/(dx) = lambdaexp(u)`
We then reverse our substitution for `u`, and obtain,
`(dexp(lambdax))/(dx)=lambdaexp(lambdax)`
For more information, see https://en.wikipedia.org/wiki/Chain_rule and https://en.wikipedia.org/wiki/Integration_by_substitution