Riccati Equation, special case I
Used to find the solution to an equation of the standard form,
`y'=F(x)+ky^2`
Using the substitution,
`y=-(u')/(ku)`
The equation becomes,
`(-(u')/(ku))'=F(x)+k(-(u')/(ku))^2`
We apply the product rule to the lhs.,
`(-(u')/(ku))'=-u'(1/(ku))'-(1/(ku))u''`
...and then apply the
reciprocal rule to the first term,
`(-(u')/(ku))'=-u'(-(u')/(ku^2))'-(1/(ku))u''=(u')^2/(ku^2)-(1/(ku))u''`
Thus,
`(u')^2/(ku^2)-(1/(ku))u''=F(x)+k(-(u')/(ku))^2`
We expand the brackets,
`(u')^2/(ku^2)-(1/(ku))u''=F(x)+(u')^2/(ku^2)`
We can now subtract the common terms,
`-(1/(ku))u''=F(x)`
Lastly, on rearranging the equation, we arrive at the linear second order equation,
`u''=-F(x)ku`