Consecutive Second and First-order Kinetics

this is not finished...

Scheme:

`A+Bstackrel(k_1) rarrCstackrel(k_2) rarrD`

Differential Equation:

`A'(t)=-k_1AB`

`B'(t)=-k_1AB`

`C'(t)=k_1AB-k_2C`

`D'(t)=k_2C`

Case I: A0 = B0

`A'(t)=B'(t)`

`A_0=A+C+D` and `A=B`

Solutions

`A=A_0/(1+k_1A_0t)`

`B=B_0/(1+k_1B_0t)`

`C(t)=-k_2/k_1 exp(k_2/(A_0k_1))   ["E"_1((1-A_0k_1t)k_2/(A_0k_1))-(A_0k_1)exp(-(1-A_0k_1t)k_2/(A_0k_1))/((1-A_0k_1t)k_2)]exp(-k_2t) +...`

` ... + [k_2/k_1 exp(k_2/(A_0k_1))   ["E"_1(k_2/(A_0k_1))-(A_0k_1)exp(-k_2/(A_0k_1))/(k_2)]]exp(-k_2t)`

 

Derivation

The differential equation `A'(t)` simplifies using the balance equation `A=B`,

`A'(t)=-k_1AB=-k_1A^2`

This has the separable equation,

`(dA)/A^2=-k_1t`

The solution is obtained directly,

`-[1/A]_0^t=-k_1t rarr -1/A+1/A_0=-k_1t`

This can be solved for A,

`A=A_0/(1+k_1A_0t)`

From the intial conditions, this is also equal to B(t).

We can now solve the differential equation C'(t) using the above solution,

`C'(t)=k_1AB-k_2C=k_1(A_0/(1+k_1A_0t))^2-k_2C`

This can be solved using the integrating factor method. We rearrange it to be of the general form,

`C'+F(t)C=G(t)`

Accordingly, we can define the functions,

`F(t) = k_2`

`G(t)=k_1(A_0/(1+A_0k_1t))^2`

We need to calculate the integrating factor,

`lnI=int F(t)dt` and so `I=exp(k_2t)`

and also the rhs integral,

`int IG(t)dt = k_1A_0^2 int exp(k_2t)/(1+A_0k_1t)^2 dt`

Which we can solve as the exponential integral with a square denominator via u-substitution. Ie.,

`u=1+A_0k_1t` and so, `(du)/(dt)=A_0k_1`, then `(dt)=(du)/(A_0k_1)` and `t=(u-1)/(A_0k_1)`

So the integral becomes,

`int IG(t)dt = A_0 int " " exp(k_2(u-1)/(A_0k_1))/u^2 du`

Next we expand the exponential term,

`exp(k_2(u-1)/(A_0k_1))=exp((k_2u)/(A_0k_1)-k_2/(A_0k_1))=exp((k_2u)/(A_0k_1))exp(-k_2/(A_0k_1))`

Now we perform a second u-substitution,

`w=-uk_2/(A_0k_1)`, so `(dw)/(du)=-k_2/(A_0k_1)`, `du=-dw(A_0k_1)/k_2` and `u=-w(A_0k_1)/k_2`

Hence,

`int IG(t)dt = exp(-k_2/(A_0k_1)) k_2^2/(A_0k_1^2) int " " exp(-w)/w^2 du`

...which can be expressed using the exponential integral identity (square denominator),

` int "  " (exp(-w)dw)/(w^2) = "E"_1(w)-exp(-w)/w`

Ie.,

`int IG(t)dt = exp(-k_2/(A_0k_1)) k_2^2/(A_0k_1^2) ["E"_1(w)-exp(-w)/w] + c_i`

Reversing the substitution, `w` and then `u`,

`int IG(t)dt = exp(-k_2/(A_0k_1)) k_2^2/(A_0k_1^2) ["E"_1(-(1+A_0k_1t)k_2/(A_0k_1))+exp((1+A_0k_1t)k_2/(A_0k_1))/((1+A_0k_1t)k_2/(A_0k_1))] + c_i`

Then back to integrating factor method, to solve the initial differential equation we make use of the identity, (note that the variable y, is concentration `C(t)`, and `c_i` is the integration coefficient),

`y=1/(I(x)) ( int I(x)G(x)dx + c_i)`

Thus,

`C(t)=-k_2/k_1 exp(k_2/(A_0k_1))   ["E"_1((1-A_0k_1t)k_2/(A_0k_1))-(A_0k_1)exp(-(1-A_0k_1t)k_2/(A_0k_1))/((1-A_0k_1t)k_2)]exp(-k_2t) + c_iexp(-k_2t)`

Lastly we need to find the value of the integration coefficient, `c_1`. Using the particular value, `C(0)=0` and `t=0` then,

`0=-k_2/k_1 exp(k_2/(A_0k_1))   ["E"_1(k_2/(A_0k_1))-(A_0k_1)exp(-k_2/(A_0k_1))/(k_2)] + c_i`

Hence,

`c_i=k_2/k_1 exp(k_2/(A_0k_1))   ["E"_1(k_2/(A_0k_1))-(A_0k_1)exp(-k_2/(A_0k_1))/(k_2)]`

We then arrive at,

`C(t)=-k_2/k_1 exp(k_2/(A_0k_1))   ["E"_1((1-A_0k_1t)k_2/(A_0k_1))-(A_0k_1)exp(-(1-A_0k_1t)k_2/(A_0k_1))/((1-A_0k_1t)k_2)]exp(-k_2t) +...`

` ... + [k_2/k_1 exp(k_2/(A_0k_1))   ["E"_1(k_2/(A_0k_1))-(A_0k_1)exp(-k_2/(A_0k_1))/(k_2)]]exp(-k_2t)`

Using the mass-balance equations, we can find `D(t)`,

`D=A_0-A-C`